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AIIItnO-The .teady state response of a deep, narrow, rectanauJar foundation to antiplane shear waves IS
studied. Consideration is given first to the dynamic response of a smale riaid line iaclusion This result is
used to model a rectanp1ar foundation in a manner similar to Haritos and Keer who studied the prnblem of
a n,id block partiaDy embedded in an elastic haIf-space. Beuuse the problem is antiplane. the results
arrived at for the deep, narrow, rectanplar foundation also apply to a shallow, wide, rectanplar
foundation.

INTRODUCTION
In recent years the problem of designing earthquake resistant structures has become increas
ingly important. Fundamental to this problem is understanding the interaction between the soil
and structure. Eftorts have proceeded in two general directions. One method adapts the finite
element method to solve wave propagation problems for semi-infinite domains[1]. The results
can be used to estimate dynamic compliances for fairly complex foundation geometries and a
wide ranae of soil properties[2). Another line of attack makes use of analytical tools such as the
boundary integral method, the integral transform method, and the Green's function method.
More idealized foundation shapes are treated (e.g. semi-eyJindrical[3, 4), rectangular[5-7],
semi-eUiptical[8), strip[9-12J) with these methods. However, althoUlh limited, they offer some
advantages over the finite element method in that results can often lead to exact..or asymptotic
solutions and offer no difticulty in satisfying the radiation conditions inherent in wave pro
paption problems for semi-infinite domains[l). The development of analytical expressions for
soil-strueture interaction is important because, as demonstrated by Lee and Trifunac[13), only
analytical results can provide a complete check on approximate methods used in the solution of
a problem.

In this paper the soil-structure interaction problem for a deep, narrow rectangular foun
dation is studied (Fig. I). The soil is represented by a homogeneous, isotropic, linearly elastic
half-space and the loading on the foundation is represented by antiplane shear waves with
harmonic time dependence. The foundation is represented by rigid inclusions in a manner
similar to Haritos and Keer[14).

The paper is orpRized as follows. First, the equations of motion for a ri,idline inclusion are
formulated _ the procedure of Thau[1S). Next, makina use of this result, the equations of
motion for a deep, narrow rectangular foundation are given and the associated assumptions and
approximations are explained. The numerical procedure used to solve the equations is des
cribed and finally the·numerical results are discussed.

Because of the nature of the antiplane formulation of this problem, similar results and
conc!usions arrived at for a deep, narrow rectangular foundation also apply to a shallow, wide
rectanaular foundation.

RIGID LINE INCLUSION

FomalllQtion
The aeometry and coordinate system are depicted in Fig. 2. A rigid line inclusion is

embedded a unit depth in an elastic half-space with density p and sheaF modulus p.. The surface
of the half-space is free of tractions. A state of antiplane strain is treated in which liz =
IIz(X, y, t) is the only non-zero displacement component. This represents the limitina case for
the deep, narrow rectangular foundation, i.e. No == o.

tThe authors are lI'ItefuJ for support from the NatIOnal Science FoundatIOn, grant CME 79180IS.
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F"18. 2. RiIid line inclusion.

Incident upon the inclusion is a plane time harmonic shear wave with amplitude unity. It has
the form

(1)

when k is the dimeuioaless wave number, .. is the frequellCY, and 8 is the aQlle of incidence.
Since the lime harmonic response of the inclusion, ~e-Ioot say, is to be calculated, the total

field is written as

(2)

where wt'>(x, y) e-Ioot is the scattered field sadsfying Helmholtz' equation,

(3)

boundary conditions,

and

(4)

1,1<00 (5)

as well as the usual radiation conditions. In the sequel, the factor e-"" is dropped.
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VI&- 3. RiPI line inclusion: ecruivalellt fuD.space problem.

The equivalent fuIkpace problem is depicted in Fia. 3. Here the UincideDt" field takes the
form

W(I+r>(x, y) =eltJ"'2 cos (kX cos 6). (6)

Note that the above automatically satisfies the zero traction condition on the surface of the
haIf-space. Equation (6) represents the incident field plus the wave reftected from the half-space
boundary in the absence of the line inclusion.

By extending the domain of w('l(x, y)' to x <0, the field for the fuD-space problem is

w(x, y) = wh+r)(x, y) + w(')(x, y) (7)

where

w(I)(x, y) =w(,)( - x, y) (8)

and

V2w+k2w=0 (9)

with

w(x,O)=.i Ixl<l. (10)

Equation (8) guarantees that the zero traction condition is identically satisfied.

Method of soilltion
Following Thau[lS] the scattered field is calculated in two parts: the diffracted field w\(x, y)

and the radiated field W2(X, y). Thus

(11)
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where w,(x, y) and W2(X, y) are determined by solving

with

w(/+r)(x, 0) + wlt,O) =0 Ixl < I

w~x, 0) =I Ixl < 1.

(12)

(13)

(14)

It is important to emphasize that w,(x, y) is the field representing the dUfraction of the
incident field by the inclusion held fixed while W2(X, y) represents the radiated field from the
inclusion translatina with displacement t:. e- Ioot in the absence of an incident field. The resultant
z-directed force from these two problems will be equated to -,Jc2MFt:. where MF is the
normalized mass per unit lenath associated with the inclusion.

The following representation is used for both fields:

(15)

where

(16)

is proportional to the jump in shear stress across the inclusion[l7] and Ho(\) (.) is a Hankel
fuae:tion of the first kind of ordor mollS]. Equation (15) was derived usiBc iDtepal transform
teebniques[l6] althoqb other methods will yield an identical result[l7].

The resultant z-directed forces from the two problems are given by

where F, is the drivina force and F2 the impedance.
Equation (15) is intepated by parts to yield the result

wj(x, y) =- ~ Bj(l)[Ho(l)(kv'«(l +X)2 + y2» +/lo(I)(kv'«I- xf + y2»]

-if, B(s) v'«~~;;i yi) H,(ll(kv'«s - xf+ y2» ds

where

Bj(s) =f. bjW d~ (j =1,2)

B,O)=p,-'F, B2(l)=t:.- 1p,- I F2

and H,(\)(') is the Hankel function of the first kind of order one{l8].
Substituting eqn (19) into eqns (13) and (14) gives

If1 [I ;11'k I I ]+- Bj(s) -+-2 sgn(s-x)N(ks-x) ds=-4f,(x)
11' -I s-x

(17)

(j= 1,2)

(8)

(19)

(20)

(21)
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where
f.(X) = - wCl+')(x, 0),

1-1(.1) =1,

and
N(kls - xl) =H I(I)(kls - x/)+2Q1rkls - xl·

Upon solution of these Cauchy integral equations, ~ is determined from

Therefore

Numerical solulion
In order to obtain a numerical solution, eqn (21) is modified by the transformation

where tMs) can be shown to exhibit the properties

~/(S) = - ~/( - s)

~,(s) =(1- S~Jl2~/(S)

ItMs~< GO IsI:s 1.

The result is

iB,(l)fl Ho(l)(k/s - xl) ds

1II [1 ik", ]+- ~/(s) -::-+-2 sgn(s-x)N(kls -xl) ds = -4"(.1)
", _I S X

U=1, 2) 1.11 < 1.
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(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

The above equation is solved using the collocation scheme of Erdopn and Gopta[J9]. Upon
application of the Gauss-Chebyshev intearation formula we obtain the system of aJaebraic
equations

where

.;.. 1- 1,
2 .1../)[ 1 ()] iB,(l) I I H. (l)(kl I::1 N +1"I't. x" _ t. +",,, II(' x, + 2 _lOS - x, )ds =- 4"(.1,) (32)

p =1,2, ... , N +1

xp = cos [",.(2p - 1)/2(N+1)] (33)

I" =cos [",q/(N + 1)] (34)

i",k
IC(/", x,,) =T sgn (t. - x,)N(klt. - x"I). (35)

The system provides N +1equation for the N +1unknowns Mil),"" ~/(/N)'and B,(1). In
the present computations, N was chosen as an even inte,er. The intepal of the Hankel
function was evaluated using a seven point Lagrange interpolation scheme of a table in
Ref. [18].
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FIg. 4. FoundatIOn of Iimte tluckness: eqwvalent full·space problem.

FOUNDATION OF FINITE THICKNESS

The results of the previous section are now used to formulate the problem of a deep,
narrow, rectaqular foundation embedded a unit depth in an elastic half-space. The thickness to
depth ratio is equal to E where 0< E~ 1 and the incident field is the same as before.

The boundary conditions for the equivalent full-space problem (Fig. 4) are

Ixj< I

Ixl< 1

(36)

(37)

w(l, y) =11 Iyl < E/2 (38)

w( - 1, y) = 11 jyl < E/2. (39)

The foundation is represented by two rigid line inclusions placed a distance E apart. Along
these inclusions boundary conditions (36) and (37) are imposed. Boundary conditions (38) and
(39) are not satisfied. However, this is not a great disadvantage since we wish to calculate
impedance functions for the foundation which are "global" properties. The boundary con
ditions are violated "locally," i.e. in the neighborhood of x = ± 1, to simplify the analytical
treatment of the problem. This is similar to the procedure used by Haritos and Keer(l4} to
analyze the problem of an elastic half-space in which a perfectly bonded, rigid rectangular
block is partially embedded.

An additional consideration is that the material between the two inclusions should move as a
rigid body. Asymptotic analysis of the interior problem for the Helmholtz equation in a long,
narrow, rectangular strip with boundary conditions (36) and (37) and arbitrary boundary
conditions at the ends reveals that for low frequencies w - 11 in the strip and deviates from that
only in the boundary layer of tbicbess 0(*1'2) near the ends of the strip (see Appendix). Thus,
for low frequencies «kEf <c 1) this model will give adequate results for the determination of the
impedaRce fuaetions and the time harmonic response of the foundation.

The total field is written as

w(x, y) =w(l+r)(x, y) + w"j(x, y) + w~(x, y) + I1W"i(x, y) + I1w1(x, y) (40)
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where
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The unknowns are determined from

WC/+,)(x, -~) +w.(x, -~) +wr(x, -~) = 0 'Ixl < I

WC,+T) ( x,~) +w.(x,~) +wr(x,~) =0 Ixl < I

wi(x, -~)+ wi(x, -~) = I Ixl< 1

wi(x,~) + wi (x,~) = 1 Ixj < 1.

(42)

(43)

(44)

(45)

As before, eqn (41) is integrated by parts and substituted into eqns (42)-(45). The resulting
system of Cauchy integral equaaons can be uncoupled. The uncoupled equation takes the form:

where

tJ:<I)=!(Bi(t)~B:(t» U= 1,2)

flex) =wCl+,)(x, -~) ~ wCl+,)(x,~)
fi(x) =2, fi(X) = O.

The definition of the Bj(l)'s is the same as before. Also, the numerical scheme described in
the previous section is applicable here without modification.

Upon solution of the integral equations, IJ. is determined from

where

- plfMFIJ. =Fj +F!+IJ.(Fi +Pi)

Mp=Ms+Ms

Fj +F! = J,t[B.(t) +BW)}

Fi +Pi = - plfMs+J,t{Bi(l)+B;o»).

(47)

(48)

(49)

(50)

The quantity Ms is the ratio of the mass per unit length of the foundation made of soil to the
mass per unit length of a unit cube of soil. The quantity ME is the ratio of the mass per unit
length of the foundation to the mass per unit length of a unit cube of soil that is in excess of
Ms- Thus, Mp represents the ratio of the total mass per unit length of the foundation to the
mass per unit length of a unit cube of soil.
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Equation (49) gives the driving force and eqn (50) gives the impedance for the massless
foundation.

Therefore

(51)

RESULTS
Figures 5 and 6 give the dynamic response of a single rigid line inclusion. The amplitude of

motion lAI is plotted versus the dimensionless wavenumber Ie. The quantity Mp is the mass per
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UDit IeDIth of the mclusion normalized with respect to the mass per unit length of a UDit cube of
soil. TIle plots are for All' = 0.25 and 1.00 and 6:: 0, .",4, and .",2.

rJlllfe 5 shows that for M, =0.25 and (J = .",2 (JJ'azi.IJI incidence) the inclusion moves
esseatiaUy lib the baJf-space would move in the absence of the inclusion. For the other anaIes
of incidence, 14/ is seen to cbaose sianificantly with chanles in k.

rJllft 6 shows that /4/ departs silnificaotly from the free.field amplitude (equal to 2) for
certain values of k. This can be understood in terms of an equivalent single degree of freedom
system. Since the embedment depth is fixed, the equivalent elastic sprm, and dashpot coastants
are fixed. Therefore increasing the mass results in the reduction of the equivalent natural
frequency and fraction of critical damping[8].
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Figures 7 and 8 give the dynamic response of a foundation of finite t~kness. As before, the
amplitude of motion lal is plotted versus the dimensionless wavenumber Ie. The cases reported
here are for Mp = 0.25 and 1.00. E = 0.1 and 6=0, '11'/4, and rrl2.

The results for the foundation of fiDite thickness exhibit characteristics similar to those for
the rigid line inclusion. Figure 7 shows that for Mp =0.25, E =0.1, and 6= 1112 (Jrazing
incidence) the foundation moves essentially like the half-space in the absence of the foun
dation.

Figure 8 shows that lal can depart significantly from the free-field motion. This can also be
understood in terms of an equivalent single degree of freedom system. The results obtained
here are similar to those of Wong and Trifunac[8} for a semi-elliptical foundation whose minor
axis to major axis ratio is 0.05.

Figures 9 and 10 show the stifness and damping functions, respectively. The stUfness for
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the foundation of finite thickness is greater than that of the single rigid line inclusion and
approaches a value of 1.15 for k = 4. This is consistent with the findinJS of a number of other
investigators[3-8,12J. In particular, the results of Hradilek[12] for the stiffness and damping
functions agree with those shown in Figs. 9 and 10 for f = O. The damping is also greater for the
finite thickness foundation. This explains the fact that the peak response of the single inclusion
is greater than that of the foundation of finite thickness.

CONCLUSION

In this paper the dynamic response of a deep, narrow. rectangular foundation to antipiane
shear waves has been determined. These results also apply to the case of a shallow. wide,
rectangular foundation because of the nature of the antiplane formulation. The results were
found to be similar to those obtained by Wong and Trifunac[8J and Hradilek[l2J.

Similar considerations used in the solution of this antiplane problem can be applied to the
corresponding in-plane problem. Also, the results obtained here can be utilized in aoalyziua the
dynamic response of extended structures, i.e. structures that are supported on more than one
foundation.
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APPENDIX
ConsIder the following boundary value problem for HeJmboJtz' equatJon ill a thIn domain'

iixx +liyy +Lrii =0

ii(X,O) =I O<X < L

ii(X, 11) = 1 O<X<L

ii(O. Y) .. G,(Y) 0< Y < II

ii(L, y)=G2Cy) 0< Y<k

(AI)

(A2)

(M)
(oM)

(AS)

The geometry IS depIcted In Fig. II This domam is representative of the IDteflOr of the foundation in the fuD-space
problem where ii = wla and L '" 20.

Under the transformatIOn x=XlL, y= Ylh. GI(Y) = g.(y), G2CY)=I2(Y), and ii(X, Y)=II(x,y) the boundary value
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Fie. II Geometry of tbm domain.

problem becomes'

'1
2
11u +"" + '1

2{j2" = 0

"(x,0)= I 0<%<1

"(x, I) =I 0< %< I

"(O.y) .. I.(y) 0< Y< 1

"(l, y) .. giy) 0< y< 1

where

and we require

In order to constnJct an asymptotic expausion of the solution we take an IIIIatZ of the form:

"_"0+ '12uZ+ ,,411+ ..

SubstitutiDa this tato eqaa (A6) dIrouIh (AI0) lives

"~ '" 0 "°(%,0) = I "O(x, 1) = I

";, '" - "~2_{j2""-2 ""(x, 0) .. 0 ""(x, 1) .. 0

where /I is an even DUmllcr peatcr than or eqllll to two.
Solution of the above shows

"-I +0(",2)

x

(A6)

(A7)

(AS)

(A9)

(A10)

(All)

(A12)

(A13)

(AI4)

(AIS)

(AI6)

We note that this solution will not. in paeraI. salitfy eqns (A9) lIDd (AIO). Tberefore. this SCM:IIIed "olller expausion"
must be modilled by the "boaMIry layer upaasion" lIIII1' the eads of the doIlaia(2IJ}.

Because of the nature of the 8IItipIue formulation of the tide problem we lote no aenera1ity by COJIStderins
,\(y)" giy). 1<,). III dIis case tlIe bouDdarr layer coastruc:tin is...for both ...

To cOllltrUct the boadary layer expanaioa lIIII1' %'" O. we iatroctuce tlIe stnteIIiq transformataon

(AI7)

The boundary layer soIuuon, U(t, y), satisfies:

U«+ U"+,,2~U"'0

U(O,Y)"'I<Y) O<y< I

U(t,O)"1 O<~<QO

U(c, I) .. 1 O<E<QO

(AI8)

(A19)

(A20)

(A21)

In addition to satisfyiaa eqaa (AI8)-(A2l) the boaDdary layer solution mllSt be "matdIcd" with the outer expansaon
SiDl:e. for siIapIicity. we are c:oasiIIerinI heR only ....0.- tenIIS it is sdcint to lIIiIir.e the matdIin& procedure of
PraadtI(201, i.e we require

where Il(x, y) is pven by eqn (AI6)

11m U(c, y) .. 1im "(x, y)
f- ....

(All)
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The ansatz for the iJmer expansion IS

which yields

utt+ U~ = 0 UO<O. y) = g(y) UO<t,O) = UO(t,l) = 1

lim UO(l,y) = 1
f--

Uif+ U;, = - fJ2U"-2 U"(O. y) = U"(t.O) = U"(l, I) =0

+matclnng condition

where /I IS an even number areater than or equal to two
To leadina order, the boundary layer expansion IS

U -I + t bIll e-"'-f sm m'ITY + 0(,,2)
",-I

where the b. are the Fourier collicients of g(y)-l,
Since the boundary layer construction is the same near %= I. we can wnte the composite expansIOn as (20):

u-I+ i: b",e--a sin m'ITY+ t b.. e--"sin m'ITy +0(,,2)
'" ",-I

where

and

6 =(1- %)/"
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(A23)

(A24)

(A25)

(AU)

(A27)

(A28)

(A29)

It is clear from eqn (A27) that whatever the form of g(y), its effect decays exponentially as we move away from the
ends of the reetIIIIIe.

SiDc:e •• wi' IIId ".~ we have that w-, in the rectaqIe IlId deviates from that only in the bouIdary layer of
...... O(~) _ the _s of the rectanPe. We ialerpret this in terms of the tide problem as .... a aood
."..Dutilm to • body IllOlion of the material contained between the two naid line inclusiolts that represent the deep,
.-row, reetIItIIuIIr fouadation.
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